
PetitParser: Building Modular Parsers

Chapter 1

PetitParser: Building
Modular Parsers

with the participation of:
Jan Kurs (kurs@iam.unibe.ch)
Guillaume Larcheveque (guillaume.larcheveque@gmail.com)
Lukas Renggli (renggli@gmail.com)

Building parsers to analyze and transform data is a common task in soft-
ware development. In this chapter we present a powerful parser framework
called PetitParser. PetitParser combines many ideas from various parsing
technologies to model grammars and parsers as objects that can be reconfig-
ured dynamically. PetitParser was written by Lukas Renggli as part of his
work on the Helvetia system 1 but it can be used as a standalone library.

1.1 Writing parsers with PetitParser

PetitParser is a parsing framework different from many other popular parser
generators. PetitParser makes it easy to define parsers with Smalltalk code
and to dynamically reuse, compose, transform and extend grammars. We
can reflect on the resulting grammars and modify them on-the-fly. As such
PetitParser fits better the dynamic nature of Smalltalk.

Furthermore, PetitParser is not based on tables such as SmaCC and
ANTLR. Instead it uses a combination of four alternative parser methodolo-
gies: scannerless parsers, parser combinators, parsing expression grammars
and packrat parsers. As such PetitParser is more powerful in what it can

1http://scg.unibe.ch/research/helvetia

PetitParser: Building Modular Parsers

http://scg.unibe.ch/research/helvetia

2 PetitParser: Building Modular Parsers

parse. Let’s have a quick look at these four parser methodologies:

Scannerless Parsers combine what is usually done by two independent
tools (scanner and parser) into one. This makes writing a grammar
much simpler and avoids common problems when grammars are com-
posed.

Parser Combinators are building blocks for parsers modeled as a graph of
composable objects; they are modular and maintainable, and can be
changed, recomposed, transformed and reflected upon.

Parsing Expression Grammars (PEGs) provide the notion of ordered
choices. Unlike parser combinators, the ordered choice of PEGs al-
ways follows the first matching alternative and ignores other alterna-
tives. Valid input always results in exactly one parse-tree, the result of
a parse is never ambiguous.

Packrat Parsers give linear parse-time guarantees and avoid common prob-
lems with left-recursion in PEGs.

Loading PetitParser

Enough talking, let’s get started. PetitParser is developed in Pharo, and there
are also versions for Java and Dart available. A ready made image can be
downloaded2. To load PetitParser into an existing image evaluate the fol-
lowing Gofer expression:

Script 1.1: Installing PetitParser
Gofer new
smalltalkhubUser: 'Moose' project: 'PetitParser';
package: 'ConfigurationOfPetitParser';
load.

(Smalltalk at: #ConfigurationOfPetitParser) perform: #loadDefault.

More information on how to get PetitParser can be found on the chapter
about petit parser in the Moose book.3

Writing a simple grammar

Writing grammars with PetitParser is as simple as writing Smalltalk code.
For example, to define a grammar that parses identifiers starting with a letter
followed by zero or more letters or digits is defined and used as follows:

2https://ci.inria.fr/moose/job/petitparser/
3http://www.themoosebook.org/book/internals/petit-parser

https://ci.inria.fr/moose/job/petitparser/
http://www.themoosebook.org/book/internals/petit-parser

1.1 Writing parsers with PetitParser 3

identifier: letter word

Figure 1.1: Syntax diagram representation for the identifier parser defined
in script 1.2

Script 1.2: Creating our first parser to parse identifiers

|identifier|
identifier := #letter asParser , #word asParser star.
identifier parse: 'a987jlkj' −→ #($a #($9 $8 $7 $j $l $k $j))

A graphical notation

Figure 1.1 presents a syntax diagram of the identifier parser. Each box rep-
resents a parser. The arrows between the boxes represent the flow in which
input is consumed. The rounded boxes are elementary parsers (terminals).
The squared boxes (not shown on this figure) are parsers composed of other
parsers (non terminals).

If you inspect the object identifier of the previous script, you’ll notice that
it is an instance of a PPSequenceParser. If you dive further into the object you
will notice the following tree of different parser objects:

Script 1.3: Composition of parsers used for the identifier parser

PPSequenceParser (accepts a sequence of parsers)
PPPredicateObjectParser (accepts a single letter)
PPPossessiveRepeatingParser (accepts zero or more instances of another parser)

PPPredicateObjectParser (accepts a single word character)

The root parser is a sequence parser because the , (comma) operator cre-
ates a sequence of (1) a letter parser and (2) zero or more word character
parser. The root parser first child is a predicate object parser created by the
#letter asParser expression. This parser is capable of parsing a single letter
as defined by the Character»isLetter method. The second child is a repeating
parser created by the star call. This parser uses its child parser (another pred-
icate object parser) as much as possible on the input (i.e., it is a greedy parser).
Its child parser is a predicate object parser created by the #word asParser ex-
pression. This parser is capable of parsing a single digit or letter as defined
by the Character»isDigit and Character»isLetter methods.

4 PetitParser: Building Modular Parsers

Parsing some input

To actually parse a string (or stream) we use the method PPParser»parse: as
follows:

Script 1.4: Parsing some input strings with the identifier parser
identifier parse: 'yeah'. −→ #($y #($e $a $h))
identifier parse: 'f123'. −→ #($f #($1 $2 $3))

While it seems odd to get these nested arrays with characters as a return
value, this is the default decomposition of the input into a parse tree. We’ll
see in a while how that can be customized.

If we try to parse something invalid we get an instance of PPFailure as an
answer:

Script 1.5: Parsing invalid input results in a failure
identifier parse: '123'. −→ letter expected at 0

This parsing results in a failure because the first character (1) is not a
letter. Instances of PPFailure are the only objects in the system that answer
with true when you send the message #isPetitFailure. Alternatively you can
also use PPParser»parse:onError: to throw an exception in case of an error:

identifier
parse: '123'
onError: [:msg :pos | self error: msg].

If you are only interested if a given string (or stream) matches or not you
can use the following constructs:

Script 1.6: Checking that some inputs are identifiers
identifier matches: 'foo'. −→ true
identifier matches: '123'. −→ false
identifier matches: 'foo()'. −→ true

The last result can be surprising: indeed, a parenthesis is neither a digit
nor a letter as was specified by the #word asParser expression. In fact, the
identifier parser matches “foo” and this is enough for the PPParser»matches:
call to return true. The result would be similar with the use of parse: which
would return #($f #($o $o)).

If you want to be sure that the complete input is matched, use the mes-
sage PPParser»end as follows:

Script 1.7: Ensuring that the whole input is matched using PPParser»end

identifier end matches: 'foo()'. −→ false

1.1 Writing parsers with PetitParser 5

The PPParser»end message creates a new parser that matches the end of
input. To be able to compose parsers easily, it is important that parsers do not
match the end of input by default. Because of this, you might be interested
to find all the places that a parser can match using the message PPParser»
matchesSkipIn: and PPParser»matchesIn:.

Script 1.8: Finding all matches in an input
identifier matchesSkipIn: 'foo 123 bar12'.
−→ an OrderedCollection(#($f #($o $o)) #($b #($a $r $1 $2)))

identifier matchesIn: 'foo 123 bar12'.
−→ an OrderedCollection(#($f #($o $o)) #($o #($o)) #($o #()) #($b #($a $r $1 $2))

#($a #($r $1 $2)) #($r #($1 $2)))

The PPParser»matchesSkipIn: method returns a collection of arrays contain-
ing what has been matched. This function avoids parsing the same character
twice. The method PPParser»matchesIn: does a similar job but returns a collec-
tion with all possible sub-parsed elements: e.g., evaluating identifier matchesIn:
'foo 123 bar12' returns a collection of 6 elements.

Similarly, to find all the matching ranges (index of first character and
index of last character) in the given input one can use either PPParser»
matchingSkipRangesIn: or PPParser»matchingRangesIn: as shown by the script be-
low:

Script 1.9: Finding all matched ranges in an input
identifier matchingSkipRangesIn: 'foo 123 bar12'.
−→ an OrderedCollection((1 to: 3) (9 to: 13))

identifier matchingRangesIn: 'foo 123 bar12'.
−→ an OrderedCollection((1 to: 3) (2 to: 3) (3 to: 3) (9 to: 13) (10 to: 13) (11 to: 13))

Different kinds of parsers

PetitParser provide a large set of ready-made parser that you can compose to
consume and transform arbitrarily complex languages. The terminal parsers
are the most simple ones. We’ve already seen a few of those, some more are
defined in the protocol Table 1.1.

The class side of PPPredicateObjectParser provides a lot of other factory
methods that can be used to build more complex terminal parsers. To use
them, send the message PPParser»asParser to a symbol containing the name
of the factory method (such as #punctuation asParser).

The next set of parsers are used to combine other parsers together and is
defined in the protocol Table 1.2.

6 PetitParser: Building Modular Parsers

Terminal Parsers Description

$a asParser Parses the character $a.
’abc’ asParser Parses the string ’abc’.
#any asParser Parses any character.
#digit asParser Parses one digit (0..9).
#letter asParser Parses one letter (a..z and A..Z).
#word asParser Parses a digit or letter.
#blank asParser Parses a space or a tabulation.
#newline asParser Parses the carriage return or line feed characters.
#space asParser Parses any white space character including new line.
#tab asParser Parses a tab character.
#lowercase asParser Parses a lowercase character.
#uppercase asParser Parses an uppercase character.
nil asParser Parses nothing.

Table 1.1: PetitParser pre-defines a multitude of terminal parsers

Parser Combinators Description

p1 , p2 Parses p1 followed by p2 (sequence).
p1 / p2 Parses p1, if that doesn’t work parses p2.
p star Parses zero or more p.
p plus Parses one or more p.
p optional Parses p if possible.
p and Parses p but does not consume its input.
p negate Parses p and succeeds when p fails.
p not Parses p and succeeds when p fails, but does

not consume its input.
p end Parses p and succeeds only at the end of the

input.
p times: n Parses p exactly n times.
p min: n max: m Parses p at least n times up to m times
p starLazy: q Like star but stop consumming when q suc-

ceeds

Table 1.2: PetitParser pre-defines a multitude of parser combinators

As a simple example of parser combination, the following definition of
the identifier2 parser is equivalent to our previous definition of identifier:

Script 1.10: A different way to express the identifier parser

identifier2 := #letter asParser , (#letter asParser / #digit asParser) star.

1.1 Writing parsers with PetitParser 7

identifier2: letter letter

digit

Figure 1.2: Syntax diagram representation for the identifier2 parser defined
in script 1.10

Parser action

To define an action or transformation on a parser we can use one of the mes-
sages PPParser»==>, PPParser»flatten, PPParser»token and PPParser»trim defined
in the protocol Table 1.3.

Action Parsers Description

p flatten Creates a string from the result of p.
p token Similar to flatten but returns a PPToken with details.
p trim Trims white spaces before and after p.
p trim: trimParser Trims whatever trimParser can parse (e.g., comments).
p ==> aBlock Performs the transformation given in aBlock.

Table 1.3: PetitParser pre-defines a multitude of action parsers

To return a string of the parsed identifier instead of getting an array of
matched elements, configure the parser by sending it the message PPParser»
flatten.

Script 1.11: Using flatten so that the parsing result is a string
|identifier|
identifier := (#letter asParser , (#letter asParser / #digit asParser) star).
identifier parse: 'ajka0' −→ #($a #($j $k $a $0))

identifier flatten parse: 'ajka0' −→ 'ajka0'

The message PPParser»token is similar to flatten but returns a PPToken that
provide much more contextual information like the collection where the to-
ken was located and its position in the collection.

Sending the message PPParser»trim configures the parser to ignore white
spaces at the beginning and end of the parsed result. In the following, using
the first parser on the input leads to an error because the parser does not
accept the spaces. With the second parser, spaces are ignored and removed
from the result.

8 PetitParser: Building Modular Parsers

number: digit

Figure 1.3: Syntax diagram representation for the number parser defined in
script 1.14

Script 1.12: Using PPParser»trim to ignore spaces
|identifier|
identifier := (#letter asParser , #word asParser star) flatten.
identifier parse: ' ajka ' −→ letter expected at 0

identifier trim parse: ' ajka ' −→ 'ajka'

Sending the message trim is equivalent to calling PPParser»trim: with #space
asParser as a parameter. That means trim: can be useful to ignore other data

from the input, source code comments for example:

Script 1.13: Using PPParser»trim: to ignore comments
| identifier comment ignorable line |
identifier := (#letter asParser , #word asParser star) flatten.
comment := '//' asParser, #newline asParser negate star.
ignorable := comment / #space asParser.
line := identifier trim: ignorable.
line parse: '// This is a comment
oneIdentifier // another comment' −→ 'oneIdentifier'

The message PPParser»==> lets you specify a block to be executed when
the parser matches an input. The next section presents several examples.
Here is a simple way to get a number from its string representation.

Script 1.14: Parsing integers
number := #digit asParser plus flatten ==> [:str | str asNumber].
number parse: '123' −→ 123

The table 1.3 shows the basic elements to build parsers. There are a few
more well documented and tested factory methods in the operators proto-
cols of PPParser. If you want to know more about these factory methods,
browse these protocols. An interesting one is separatedBy: which answers a
new parser that parses the input one or more times, with separations speci-
fied by another parser.

Writing a more complicated grammar

We now write a more complicated grammar for evaluating simple arithmetic
expressions. With the grammar for a number (actually an integer) defined

1.2 Composite grammars with PetitParser 9

above, the next step is to define the productions for addition and multipli-
cation in order of precedence. Note that we instantiate the productions as
PPDelegateParser upfront, because they recursively refer to each other. The
method #setParser: then resolves this recursion. The following script defines
three parsers for the addition, multiplication and parenthesis (see Figure 1.4
for the related syntax diagram):

Script 1.15: Parsing arithmetic expressions

term := PPDelegateParser new.
prod := PPDelegateParser new.
prim := PPDelegateParser new.

term setParser: (prod , $+ asParser trim , term ==> [:nodes | nodes first + nodes last])
/ prod.

prod setParser: (prim , $* asParser trim , prod ==> [:nodes | nodes first * nodes last])
/ prim.

prim setParser: ($(asParser trim , term , $) asParser trim ==> [:nodes | nodes second])
/ number.

The term parser is defined as being either (1) a prod followed by ‘+’, fol-
lowed by another term or (2) a prod. In case (1), an action block asks the
parser to compute the arithmetic addition of the value of the first node (a
prod) and the last node (a term). The prod parser is similar to the term
parser. The prim parser is interesting in that it accepts left and right paren-
thesis before and after a term and has an action block that simply ignores
them.

To understand the precedence of productions, see Figure 1.5. The root
of the tree in this figure (term), is the production that is tried first. A term is
either a + or a prod. The term production comes first because + as the lowest
priority in mathematics.

To make sure that our parser consumes all input we wrap it with the end
parser into the start production:

start := term end.

That’s it, we can now test our parser:

Script 1.16: Trying our arithmetic expressions evaluator

start parse: '1 + 2 * 3'. −→ 7
start parse: '(1 + 2) * 3'. −→ 9

10 PetitParser: Building Modular Parsers

term: prod +

prod

prod: prim *

prim

prim: (term)

number

Figure 1.4: Syntax diagram representation for the term, prod, and prim
parsers defined in script 1.15

term

+ prod

∗ prim

parens number

Figure 1.5: Explains how to understand the precedence of productions. An
expression is a term which is either a sum or a production. It is necessary
to recognize sums first as they have the lowest priority. A production is
either a multiplication or a primitive. A primitive is either a parenthesised
expression or a number.

1.2 Composite grammars with PetitParser

In the previous section we saw the basic principles of PetitParser and gave
some introductory examples. In this section we are going to present a way
to define more complicated grammars. We continue where we left off with
the arithmetic expression grammar.

Writing parsers as a script as we did previously can be cumbersome,
especially when grammar productions are mutually recursive and refer to
each other in complicated ways. Furthermore a grammar specified in a sin-

1.2 Composite grammars with PetitParser 11

gle script makes it unnecessary hard to reuse specific parts of that grammar.
Luckily there is PPCompositeParser to the rescue.

Defining the grammar

As an example let’s create a composite parser using the same expression
grammar we built in the last section but this time we define it inside a class
subclass of PPCompositeParser.

Script 1.17: Creating a class to hold our arithmetic expression grammar
PPCompositeParser subclass: #ExpressionGrammar

instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

Again we start with the grammar for an integer number. Define the
method number as follows:

Script 1.18: Implementing our first parser as a method
ExpressionGrammar>>number

^ #digit asParser plus flatten trim ==> [:str | str asNumber]

Every production in ExpressionGrammar is specified as a method that re-
turns its parser. Similarly, we define the productions term, prod, mul, and prim.
Productions refer to each other by reading the respective instance variable
of the same name and PetitParser takes care of initializing these instance
variables for you automatically. We let Pharo automatically add the neces-
sary instance variables as we refer to them for the first time. We obtain the
following class definition:

Script 1.19: Creating a class to hold our arithmetic expression grammar
PPCompositeParser subclass: #ExpressionGrammar

instanceVariableNames: 'add prod term mul prim parens number'
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

Script 1.20: Defining more expression grammar parsers, this time with no associ-
ated action
ExpressionGrammar>>term

^ add / prod

ExpressionGrammar>>add
^ prod , $+ asParser trim , term

12 PetitParser: Building Modular Parsers

ExpressionGrammar>>prod
^ mul / prim

ExpressionGrammar>>mul
^ prim , $* asParser trim , prod

ExpressionGrammar>>prim
^ parens / number

ExpressionGrammar>>parens
^ $(asParser trim , term , $) asParser trim

Contrary to our previous implementation we do not define the produc-
tion actions yet (what we previously did by using PPParser»==>); and we
factor out the parts for addition (add), multiplication (mul), and parenthesis
(parens) into separate productions. This will give us better reusability later
on. For example, a subclass may override such methods to produce slightly
different production output. Usually, production methods are categorized in
a protocol named grammar (which can be refined into more specific protocol
names when necessary such as grammar-literals).

Last but not least we define the starting point of the expression grammar.
This is done by overriding PPCompositeParser»start in the ExpressionGrammar
class:

Script 1.21: Defining the starting point of our expression grammar parser
ExpressionGrammar>>start

^ term end

Instantiating the ExpressionGrammar gives us an expression parser that re-
turns a default abstract-syntax tree:

Script 1.22: Testing our parser on simple arithmetic expressions
parser := ExpressionGrammar new.
parser parse: '1 + 2 * 3'. −→ #(1 $+ #(2 $* 3))
parser parse: '(1 + 2) * 3'. −→ #(#($(#(1 $+ 2) $)) $* 3)

Writing dependent grammars

You can easily reuse parsers defined by other grammars. For example, imag-
ine you want to create a new grammar that reuses the definition of number in
the ExpressionGrammar we have just defined. For this, you have to declare a
dependency to ExpressionGrammar:

1.2 Composite grammars with PetitParser 13

Script 1.23: Reusing the number parser from the ExpressionGrammar grammar
PPCompositeParser subclass: #MyNewGrammar
instanceVariableNames: 'number'
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

MyNewGrammar class>>dependencies
"Answer a collection of PPCompositeParser classes that this parser directly

dependends on."
^ {ExpressionGrammar}

MyNewGrammar>>number
"Answer the same parser as ExpressionGrammar>>number."
^ (self dependencyAt: ExpressionGrammar) number

Defining an evaluator

Now that we have defined a grammar we can reuse this definition to imple-
ment an evaluator. To do this we create a subclass of ExpressionGrammar called
ExpressionEvaluator.

Script 1.24: Separating the grammar from the evaluator by creating a subclass
ExpressionGrammar subclass: #ExpressionEvaluator

instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

We then redefine the implementation of add, mul and parens with our eval-
uation semantics. This is accomplished by calling the super implementation
and adapting the returned parser as shown in the following methods.

Script 1.25: Refining the definition of some parsers to evaluate arithmetic expres-
sions
ExpressionEvaluator>>add

^ super add ==> [:nodes | nodes first + nodes last]

ExpressionEvaluator>>mul
^ super mul ==> [:nodes | nodes first * nodes last]

ExpressionEvaluator>>parens
^ super parens ==> [:nodes | nodes second]

The evaluator is now ready to be tested:

14 PetitParser: Building Modular Parsers

Script 1.26: Testing our evaluator on simple arithmetic expressions
parser := ExpressionEvaluator new.
parser parse: '1 + 2 * 3'. −→ 7
parser parse: '(1 + 2) * 3'. −→ 9

Defining a Pretty-Printer

We can reuse the grammar for example to define a simple pretty printer. This
is as easy as subclassing ExpressionGrammar again!

Script 1.27: Separating the grammar from the pretty printer by creating a subclass
ExpressionGrammar subclass: #ExpressionPrinter
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

ExpressionPrinter>>add
^ super add ==> [:nodes | nodes first , ' + ' , nodes third]

ExpressionPrinter>>mul
^ super mul ==> [:nodes | nodes first , ' * ' , nodes third]

ExpressionPrinter>>number
^ super number ==> [:num | num printString]

ExpressionPrinter>>parens
^ super parens ==> [:node | '(' , node second , ')']

This pretty printer can be tried out as shown by the following expres-
sions.

Script 1.28: Testing our pretty printer on simple arithmetic expressions
parser := ExpressionPrinter new.
parser parse: '1+2 *3'. −→ '1 + 2 * 3'
parser parse: '(1+ 2)* 3'. −→ '(1 + 2) * 3'

Easy expressions with PPExpressionParser

PetitParser proposes a powerful tool to create expressions; PPExpressionParser
is a parser to conveniently define an expression grammar with prefix, post-
fix, and left- and right-associative infix operators. The operator-groups are
defined in descending precedence.

1.3 Testing a grammar 15

Script 1.29: The ExpressionGrammar we previously defined can be implemented in
few lines

| expression parens number |
expression := PPExpressionParser new.
parens := $(asParser token trim , expression , $) asParser token trim
==> [:nodes | nodes second].
number := #digit asParser plus flatten trim ==> [:str | str asNumber].

expression term: parens / number.

expression
group: [:g |
g left: $* asParser token trim do: [:a :op :b | a * b].
g left: $/ asParser token trim do: [:a :op :b | a / b]];

group: [:g |
g left: $+ asParser token trim do: [:a :op :b | a + b].
g left: $- asParser token trim do: [:a :op :b | a - b]].

Script 1.30: Now our parser is also able to manage subtraction and division
expression parse: '1-2/3'. −→ (1/3)

How do you decide when to create a subclass of PPCompositeParser or
instantiate PPExpressionParser? On the one hand, you should instantiate a
PPExpressionParser if you want to do a small parser for a small task. On the
other hand, if you have a grammar that’s composed of many parsers, you
should subclass PPCompositeParser.

1.3 Testing a grammar

The PetitParser contains a framework dedicated to testing your grammars.
Testing a grammar is done by subclassing PPCompositeParserTest as follows:

Script 1.31: Creating a class to hold the tests for our arithmetic expression grammar
PPCompositeParserTest subclass: #ExpressionGrammarTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

It is then important that the test case class references the parser class:
this is done by overriding the PPCompositeParserTest»parserClass method in
ExpressionGrammarTest:

16 PetitParser: Building Modular Parsers

Script 1.32: Linking our test case class to our parser
ExpressionGrammarTest>>parserClass
^ ExpressionGrammar

Writing a test scenario is done by implementing new methods in
ExpressionGrammarTest:

Script 1.33: Implementing tests for our arithmetic expression grammar
ExpressionGrammarTest>>testNumber
self parse: '123 ' rule: #number.

ExpressionGrammarTest>>testAdd
self parse: '123+77' rule: #add.

These tests ensure that the ExpressionGrammar parser can parse some ex-
pressions using a specified production rule. Testing the evaluator and pretty
printer is similarly easy:

Script 1.34: Testing the evaluator and pretty printer
ExpressionGrammarTest subclass: #ExpressionEvaluatorTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

ExpressionEvaluatorTest>>parserClass
^ ExpressionEvaluator

ExpressionEvaluatorTest>>testAdd
super testAdd.
self assert: result equals: 200

ExpressionEvaluatorTest>>testNumber
super testNumber.
self assert: result equals: 123

ExpressionGrammarTest subclass: #ExpressionPrinterTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

ExpressionPrinterTest>>parserClass
^ ExpressionPrinter

ExpressionPrinterTest>>testAdd
super testAdd.

1.4 Case Study: A JSON Parser 17

self assert: result equals: '123 + 77'

ExpressionPrinterTest>>testNumber
super testNumber.
self assert: result equals: '123'

1.4 Case Study: A JSON Parser

In this section we illustrate PetitParser through the development of a JSON
parser. JSON is a lightweight data-interchange format defined in http://www.
json.org. We are going to use the specification on this website to define our
own JSON parser.

JSON is a simple format based on nested pairs and arrays. The following
script gives an example taken from Wikipedia http://en.wikipedia.org/wiki/JSON

Script 1.35: An example of JSON
{ "firstName" : "John",

"lastName" : "Smith",
"age" : 25,
"address" :

{ "streetAddress" : "21 2nd Street",
"city" : "New York",
"state" : "NY",
"postalCode" : "10021" },

"phoneNumber":
[

{ "type" : "home",
"number" : "212 555-1234" },

{ "type" : "fax",
"number" : "646 555-4567" }] }

JSON consists of object definitions (between curly braces “{}”) and arrays
(between square brackets “[]”). An object definition is a set of key/value
pairs whereas an array is a list of values. The previous JSON example then
represents an object (a person) with several key/value pairs (e.g., for the
person’s first name, last name, and age). The address of the person is repre-
sented by another object while the phone number is represented by an array
of objects.

First we define a grammar as subclass of PPCompositeParser. Let us call it
PPJsonGrammar

Script 1.36: Defining the JSON grammar class
PPCompositeParser subclass: #PPJsonGrammar
instanceVariableNames: ''

http://www.json.org
http://www.json.org
http://en.wikipedia.org/wiki/JSON

18 PetitParser: Building Modular Parsers

object: { members }

,

members: pair

pair:
string
Token

: value

Figure 1.6: Syntax diagram representation for the JSON object parser defined
in script 1.37

classVariableNames: 'CharacterTable'
poolDictionaries: ''
category: 'PetitJson-Core'

We define the CharacterTable class variable since we will later use it to
parse strings.

Parsing objects and arrays

The syntax diagrams for JSON objects and arrays are in Figure 1.6 and Fig-
ure 1.7. A PetitParser can be defined for JSON objects with the following
code:

Script 1.37: Defining the JSON parser for object as represented in Figure 1.6
PPJsonGrammar>>object
^ ${ asParser token trim , members optional , $} asParser token trim

PPJsonGrammar>>members
^ pair separatedBy: $, asParser token trim

PPJsonGrammar>>pair
^ stringToken , $: asParser token trim , value

The only new thing here is the call to the PPParser»separatedBy: conve-
nience method which answers a new parser that parses the receiver (a value
here) one or more times, separated by its parameter parser (a comma here).

Arrays are much simpler to parse as depicted in the script 1.38.

Script 1.38: Defining the JSON parser for array as represented in Figure 1.7
PPJsonGrammar>>array
^ $[asParser token trim ,

1.4 Case Study: A JSON Parser 19

array: [elements]

,

elements: value

Figure 1.7: Syntax diagram representation for the JSON array parser defined
in script 1.38

elements optional ,
$] asParser token trim

PPJsonGrammar>>elements
^ value separatedBy: $, asParser token trim

Parsing values

In JSON, a value is either a string, a number, an object, an array, a Boolean
(true or false), or null. The value parser is defined as below and represented
in Figure 1.8:

Script 1.39: Defining the JSON parser for value as represented in Figure 1.8
PPJsonGrammar>>value
^ stringToken / numberToken / object / array /

trueToken / falseToken / nullToken

A string requires quite some work to parse. A string starts and end with
double-quotes. What is inside these double-quotes is a sequence of charac-
ters. Any character can either be an escape character, an octal character, or a
normal character. An escape character is composed of a backslash immedi-
ately followed by a special character (e.g., '\n' to get a new line in the string).
An octal character is composed of a backslash, immediately followed by the
letter 'u', immediately followed by 4 hexadecimal digits. Finally, a normal
character is any character except a double quote (used to end the string) and
a backslash (used to introduce an escape character).

Script 1.40: Defining the JSON parser for string as represented in Figure 1.9
PPJsonGrammar>>stringToken
^ string token trim

PPJsonGrammar>>string
^ $" asParser , char star , $" asParser

PPJsonGrammar>>char

20 PetitParser: Building Modular Parsers

value:
string
Token

number

object

array

true

false

null

Figure 1.8: Syntax diagram representation for the JSON value parser defined
in script 1.39

^ charEscape / charOctal / charNormal
PPJsonGrammar>>charEscape
^ $\ asParser , (PPPredicateObjectParser anyOf: (String withAll: CharacterTable keys))

PPJsonGrammar>>charOctal
^ '\u' asParser , (#hex asParser min: 4 max: 4)

PPJsonGrammar>>charNormal
^ PPPredicateObjectParser anyExceptAnyOf: '\"'

Special characters allowed after a slash and their meanings are de-
fined in the CharacterTable dictionary that we initialize in the initialize class
method. Please note that initialize method on a class side is called when
the class is loaded into the system. If you just created the initialize method
class was loaded without the method. To execute it, you shoud evaluate
PPJsonGrammar initialize in your workspace.

Script 1.41: Defining the JSON special characters and their meaning
PPJsonGrammar class>>initialize
CharacterTable := Dictionary new.
CharacterTable
at: $\ put: $\;
at: $/ put: $/;
at: $" put: $";
at: $b put: Character backspace;
at: $f put: Character newPage;
at: $n put: Character lf;

1.4 Case Study: A JSON Parser 21

string: " char "

charEscape

char: charOctal

charNormal

charEscape: \ " (quotation mark)

\ (backslash)

/ (slash)

b (backspace)

f (formfeed)

n (newline)

r (carr return)

t (tabulation)

charOctal: \u 4 hex digits [0-9a-fA-F]

charNormal: Any character except " and \

Figure 1.9: Syntax diagram representation for the JSON string parser defined
in script 1.40

at: $r put: Character cr;
at: $t put: Character tab

Parsing numbers is only slightly simpler as a number can be positive or
negative and integral or decimal. Additionally, a decimal number can be
expressed with a floating number syntax.

Script 1.42: Defining the JSON parser for number as represented in Figure 1.10
PPJsonGrammar>>numberToken

22 PetitParser: Building Modular Parsers

number: - 0 . digit

digit
1-9

digit

e / E + / - digit

Figure 1.10: Syntax diagram representation for the JSON number parser de-
fined in script 1.42

^ number token trim
PPJsonGrammar>>number
^ $- asParser optional ,
($0 asParser / #digit asParser plus) ,
($. asParser , #digit asParser plus) optional ,
(($e asParser / $E asParser) , ($- asParser / $+ asParser) optional , #digit asParser

plus) optional

The attentive reader will have noticed a small difference between the syn-
tax diagram in Figure 1.10 and the code in script 1.42. Numbers in JSON can
not contain leading zeros: i.e., strings such as "01" do not represent valid num-
bers. The syntax diagram makes that particularly explicit by allowing either
a 0 or a digit between 1 and 9. In the above code, the rule is made implicit
by relying on the fact that the parser combinator $/ is ordered: the parser on
the right of $/ is only tried if the parser on the left fails: thus, ($0 asParser /
#digit asParser plus) defines numbers as being just a 0 or a sequence of digits
not starting with 0.

The other parsers are fairly trivial:

Script 1.43: Defining missing JSON parsers
PPJsonGrammar>>falseToken
^ 'false' asParser token trim

PPJsonGrammar>>nullToken
^ 'null' asParser token trim

PPJsonGrammar>>trueToken
^ 'true' asParser token trim

The only piece missing is the start parser.

Script 1.44: Defining the JSON start parser as being a value (Figure 1.8) with
nothing following
PPJsonGrammar>>start
^ value end

1.5 PetitParser Browser 23

Figure 1.11: PetitParser Browser window.

1.5 PetitParser Browser

PetitParser is shipped with a powerful browser that can help to develop com-
plex parsers. The PetitParser Browser provides graphical visualization, de-
bugging support, refactoring support, and some other features discussed
later in this chapter. You will see that these features could be very useful
while developing your own parser. Pay attention to have Glamour already
loaded in your system. To load Glamour, see 1.7. Then to open the Petit-
Parser simply evaluate this expression:

Script 1.45: Opening PetitParser browser
PPBrowser open.

PetitParser Browser overview

In Figure 1.11 you can see the PPBrowser window. The left panel, named
Parsers, contains the list of all parsers in the system. You can see
ExpressionGrammar and its subclasses as well as the PPJsonGrammar that we
defined earlier in this chapter. Selecting one of the parsers in this pane acti-
vates the upper-right side of the browser. For each rule of the selected parser
(e.g., prim) you can see 5 tabs related to the rule.

Source shows the source code of the rule. The code can be updated and
saved in this window. Moreover, you can add a new rule simply by
defining the new method name and body.

24 PetitParser: Building Modular Parsers

Graph shows the graphical representation of the rule. It is updated as the
rule source is changed. You can see the prim visual representation in
Figure 1.12.

Figure 1.12: Graph visualization of the prim rule.

Example shows an automatically generated example based on the defini-
tion of the rule (see Figure 1.13 for an example for the prim rule). In
the top-right corner, the reload button generates a new example for the
same rule (see Figure 1.14 for another automatically generated exam-
ple of the prim rule, this time with a parenthesized expression).

Figure 1.13: An automatically generated example of the prim rule. In this
case, the prim example is a number.

Figure 1.14: Another automatically generated example of the prim rule, after
having clicked the reload button. In this case, the prim example is a parenthe-
sized expression.

First shows set of terminal parsers that can be activated directly after the
rule started. As you can see on Figure 1.15, the first set of prim is either
digit or opening parenthesis '('. This means that once you start parsing
prim the input should continue with either digit or '('.

One can use first set to double-check that the grammar is specified cor-
rectly. For example, if you see '+' in the first set of prim, there is some-
thing wrong with the definitions, because the prim rule was never ment
to start with binary operator.

1.5 PetitParser Browser 25

Terminal parser is a parser that does not delegate to any other parser.
Therefore you don’t see parens in prim first set because parens delegates
to another parsers – trimming and sequence parsers (see script 1.46).
You can see '(' which is first set of parens. The same states for number
rule which creates action parser delegating to trimming parser dele-
gating to flattening parser delegating to repeating parser delegating to
#digit parser (see script 1.46). The #digit parser is terminal parser and
therefore you can see ’digit expected’ in a first set. In general, compu-
tation of first set could be complex and therefore PPBrowser computes
this information for us.

Figure 1.15: The first set of the prim rule.

Script 1.46: prim rule in ExpressionGrammar

ExpressionGrammar>>prim
^ parens / number

ExpressionGrammar>>parens
^ $(asParser trim, term, $} asParser trim

ExpressionGrammar>>number
^ #digit asParser plus flatten trim ==> [:str | str asNumber]

Follow shows set of terminal parsers that can be activated directly after the
rule finished. As you can see on Figure 1.16, the follow set of prim is
closing bracket character parser ')', star character parser '*', plus charac-
ter parser '+' or epsilon parser (which states for empty string). In other
words, once you finished parsing prim rule the input should continue
with one of ')', '*', '+' characters or the input should be completely con-
sumed.
One can use follow set to double-check that the grammar is specified
correctly. For example if you see '(' in prim follow set, something is
wrong in the definition of your grammar. The prim rule should be fol-
lowed by binary operator or closing bracket, not by opening bracket.
In general, computation of follow could be even more complex than
computation of first and therefore PPBrowser computes this information
for us.

The lower-right side of the browser is related to a particular parsing input.
You can specify an input sample by filling in the text area in the Sample

26 PetitParser: Building Modular Parsers

Figure 1.16: The follow set of the prim rule.

tab. One may parse the input sample by clicking the play I button or by
pressing Cmd-s or Ctrl-s. You can then gain some insight on the parse result
by inspecting the tabs on the bottom-right pane:

Result shows the result of parsing the input sample that can be inspected by
clicking either the Inspect or Explore buttons. Figure Figure 1.17 shows
the result of parsing (1+2).

Figure 1.17: Result of parsing the (1+2) sample expression

Debugger shows a tree view of the steps that were performed during pars-
ing. This is very useful if you don’t know what exactly is happening
during parsing. By selecting the step the subset of input is highlighted,
so you can see which part of input was parsed by a particular step.
For example, you can inspect how the ExpressionGrammar works, what
rules are called and in which order. This is depicted in Figure 1.18.
The grey rules are rules that failed. This usually happens for choice
parsers and you can see an example for the prod rule (the definition is
in script 1.47). When parser was parsing 12+3∗4 term, the parser tried
to parse mul rule as a first option in prod. But mul required star character
'*' at position 2 which is not present, so that the mul failed and instead
the prim with value 12 was parsed.

Script 1.47: prod rule in ExpressionGrammar

ExpressionGrammar>>prod
^ mul / prim

ExpressionGrammar>>mul
^ prim, $* asParser trim, prod

Compare what happens during parsing when we change from 12+3∗4
to 12 ∗ 3 ∗ 4. What rules are applied know, which of them fails? The
second debugger output is in Figure 1.19, but give it your own try.

1.5 PetitParser Browser 27

Figure 1.18: Debugger output of ExpressionGrammar for input 12 + 3 ∗ 4.

Figure 1.19: Debugger output of ExpressionGrammar for input 12 ∗ 3 ∗ 4.

Tally shows how many times a particular parser got called during the pars-
ing. The percentage shows the number of calls to total number of
calls ratio. This might be useful while optimizing performance of your
parser (see Figure 1.20).

Profile shows how much time was spent in particular parser during pars-
ing of the input. The percentage shows the ratio of time to total time.
This might be useful while optimizing performance of your parser (see
Figure 1.21).

Progress visually shows how a parser consumes input. The x-axis repre-
sents how many characters were read in the input sample, ranging
from 0 (left margin) to the number of characters in the input (right
margin). The y-axis represents time, ranging from the beginning of the
parsing process (top margin) to its end (bottom margin). A line going
from top-left to bottom-right (such as the one in Figure 1.22) shows that

28 PetitParser: Building Modular Parsers

Figure 1.20: Tally of ExpressionGrammar for input 12 ∗ 3 ∗ 4.

Figure 1.21: Profile of ExpressionGrammar for input 12 ∗ 3 ∗ 4.

the parser completed its task by only reading each character of the in-
put sample once. This is the best case scenario, parsing is linear in the
length of the input: In another words, input of n characters is parsed
in n steps.

When multiple lines are visible, it means that the parser had to go back
to a previously read character in the input sample to try a different
rule. This can be seen in Figure 1.23. In this example, the parser had
to go back several times to correctly parse the whole input sample: all
input was parsed in n! steps which is very bad. If you see many back-
ward jumps for a grammar, you should reconsider the order of choice
parsers, restructure your grammar or use a memoized parser. We will
have a detailed look on a backtracking issue in the following section.

1.5 PetitParser Browser 29

Figure 1.22: Progress of Petit Parser that parses input in linear amount of
steps.

Figure 1.23: Progress of Petit Parser with a lot of backtracking.

Debugging example

As an exercise, we will try to improve a BacktrackingParser from script 1.48.
The BacktrackingParser was designed to accept input corresponding to the reg-
ular expressions 'a*b' and 'a*c'. The parser gives us correct results, but there
is a problem with performance. The BacktrackingParser does too much back-
tracking.

Script 1.48: A parser accepting 'a*b' and 'a*c' with too much backtracking.
PPCompositeParser subclass: #BacktrackingParser

instanceVariableNames: 'ab ap c p'
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

BacktrackingParser>>ab
^ 'b' asParser /

('a' asParser, ab)

BacktrackingParser>>c

30 PetitParser: Building Modular Parsers

Figure 1.24: Progress of the BacktrackingParser for inputb.

^ 'c' asParser

BacktrackingParser>>p
^ ab / ap / c

BacktrackingParser>>start
^ p

BacktrackingParser>>ap
^ 'a' asParser, p

Let us get some overview to better understand, what is happening. First
of all, try to parse inputb = 'aaaaaaaaab' and inputc = 'aaaaaaaaac'. As we can
see from progress depicted in Figure 1.24, the inputb is parsed in more or
less linear time and there is no backtracking. But the progress depicted in
Figure 1.25 looks bad. The inputc is parsed with a lot of backtracking and
in much more time. We can even compare the tally output for both inputs
inputb and inputc (see Figure 1.26 and Figure 1.27). In case of inputb, the
total invocation count of the parser b is 19 and invocation count of the parser
a is 9. It is much less than 110 invocations for the parser b and 55 invocations
for the parser a in case of inputc.

We can see there is some problem with inputc. If we still don’t know what
is the problem, the debugger window might give us more hints. Let us have
a look at the debugger window for inputb as depicted in Figure 1.28. We can
see that in each step, one 'a' is consumed and the parser ab is invoked until
it reaches the 'b'. The debugger window for inputc as depicted in Figure 1.29
looks much different. There is a progress within the p -> ab -> ap -> p loop
but the parser ab fails in each repetition of the loop. Since the parser ab fails
after having read all the string to the end and seen 'c' instead of 'b', we have
localized the cause of the backtracking. We know the problem now, so what
can we do? We may try to update BacktrackingParser so that the 'a*c' strings are

1.5 PetitParser Browser 31

Figure 1.25: Progress of the BacktrackingParser for inputc.

Figure 1.26: Tally output of the BacktrackingParser for inputb.

Figure 1.27: Tally output of the BacktrackingParser for inputc.

parsed in a similar way as the 'a*b' strings. You can see such a modification
in script 1.49.

Script 1.49: A slightly better parser accepting 'a*b' and 'a*c'.
PPCompositeParser subclass: #BacktrackingParser

instanceVariableNames: 'ab ac'
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

BacktrackingParser>>ab

32 PetitParser: Building Modular Parsers

Figure 1.28: Debugging output of BacktrackingParser for inputb.

Figure 1.29: Debugging output of BacktrackingParser for inputc.

^ 'b' asParser /
('a' asParser, ab)

BacktrackingParser>>ac
^ 'c' asParser /

('a' asParser, ac)

BacktrackingParser>>start
^ ab / ac

We can check the new metrics for inputc in both Figure 1.30 and Fig-
ure 1.31. There is significant improvement. For inputc, the tally shows only
20 invocations of the parser b and 9 invocations of the parser a. This is very
good improvement compared to the 110 invocations of the parser b and 55

1.5 PetitParser Browser 33

Figure 1.30: Progress of BacktrackingParser for inputc after the first update.

Figure 1.31: Tally of BacktrackingParser for inputc after the first update.

invocations of the parser a in the original version of BacktrackingParser (see
Figure 1.27).

Yet, we might try to do even better. There is still one backtracking hap-
pening for inputc. It happens when the parser ab tries to recognize the 'a*b'
input and fails (and backtracks) so that the parser ac can recognize the 'a*c' in-
put. What if we try to consume all the 'a's and then we choose between 'b' and
'c' at the very end? You can see such a modification of the BacktrackingParser
in script 1.50. In that case, we can see the progress without any backtracking
even for inputc as depicted in Figure 1.32.

On the other hand, the number of parser invocations for inputb increased
by 18 (the Table 1.4 summarizes the total number of invocations for each
version of the BacktrackingParser). It is up to the developer to decide which
grammar is more suitable for his needs. It is better to use the second im-
proved version in case 'a*b' and 'a*c' occur with the same probability in the
input. If we expect more 'a*b' strings in the input, the first version is better.

Script 1.50: An even better parser accepting 'a*b' and 'a*c'.
PPCompositeParser subclass: #BacktrackingParser

instanceVariableNames: 'abc'
classVariableNames: ''
poolDictionaries: ''
category: 'PetitTutorial'

34 PetitParser: Building Modular Parsers

Figure 1.32: Progress of the BacktrackingParser after the second update for
inputc.

Figure 1.33: Tally of the BacktrackingParser after the second update for inputc.

of invocations
Version inputb inputc

Original 28 233
First improvement 28 70
Second improvement 46 48

Table 1.4: Number of parser invocations for inputb and inputc depending on
the version of BacktrackingParser.

BacktrackingParser>>abc
^ ('b' asParser / 'c' asParser) /

('a' asParser, abc)

BacktrackingParser>>start
^ abc

1.6 Packrat Parsers 35

1.6 Packrat Parsers

In the beginning of the chapter, we have mentioned four parser methodolo-
gies, one of them was Packrat Parsers. We claimed that packrat parsing gives
linear parse times. But in the debugging example we saw that original ver-
sion of the BacktrackingParser parsed inputc of length 10 in 233 steps. And if
you try to parse longinputc = 'aaaaaaaaaaaaaaaaaaaac' (length 20), you will see
that the original parser needs 969 steps. Indeed, the progress is not linear.

The PetitParser framework does not use packrat parsing by default. You
need to send the memoized message to enable packrat parsing. The memo-
ized parser ensures that the parsing for the particular position in an input
and the particular parser will be performed only once and the result will
be remembered in a dictionary for a future use. The second time the parser
wants to parse the input, the result will be looked up in the dictionary. This
way, a lot of unnecessary parsing can be avoided. The disadvantage is that
PetitParser needs much more memory to remember all the results of all the
possible parsers at all the possible positions.

To give you an example with a packrat parser, let us return back to the
BacktrackingParser once again (see script 1.48). As we have analyzed before,
the problem was in the parser ab that constantly failed in the p -> ab -> ap
-> p loop. Now we can do the trick and memoize the parser ab by updating
the method ab as in script 1.51. When the memoization is applied, we get
the progress as in Figure 1.34 with the total number of 63 invocations for
inputc and the 129 invocations for longinputc. With the minor modification
of BacktrackingParser we got a linear parsing time (related to the length of the
input) with a factor around 6.

Script 1.51: Memoized version of the parser ab.
BacktrackingParser>>ab
^ ('b' asParser /

('a' asParser, ab)
) memoized

1.7 Chapter summary

This concludes our tutorial of PetitParser. We have reviewed the following
points:

• A parser is a composition of multiple smaller parsers combined with
combinators.

• To parse a string, use the method parse:.

36 PetitParser: Building Modular Parsers

Figure 1.34: Progress of the memoized version of the BacktrackingParser.

• To know if a string matches a grammar, use the method matches:.

• The method flatten returns a String from the result of the parsing.

• The method ==> performs the transformation given in the block given
in parameter.

• Compose parsers (and create a grammar) by subclassing
PPCompositeParser.

• Test your parser by subclassing PPCompositeParserTest.

For a more extensive view of PetitParser, its concepts and implementa-
tion, the Moose book4 and Lukas Renggli’s PhD5 have both a dedicated chap-
ter.

4http://www.themoosebook.org/book/internals/petit-parser
5http://scg.unibe.ch/archive/phd/renggli-phd.pdf

http://www.themoosebook.org/book/internals/petit-parser
http://scg.unibe.ch/archive/phd/renggli-phd.pdf

	PetitParser: Building Modular Parsers
	Writing parsers with PetitParser
	Composite grammars with PetitParser
	Testing a grammar
	Case Study: A JSON Parser
	PetitParser Browser
	Packrat Parsers
	Chapter summary

